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ABSTRACT

In this paper an outline is given of the basic ideas in ambient response analysis, i.e. when modal
analysis is performed on systems based on output only. Some of the most know techniques are
briefly introduced, and the basic problems discussed. The introduced techniques are the frequency
domain based peak-picking methods, the polyreference LSCE method, the stochastic subspace
method for estimation of state space systems and the prediction error method for estimation of
Auto-Regressive Moving Average Vector models. The techniques are 1llustrated on an example of
ambient reponse measuremmnts made on a highway bridge

NOMECLATURE

¥, Vector of measured output.
R, Correlation function between outputs.
At Sampling interval.

A; Discrete-time system pole.

p; Continuous-time system pole.
Lfe] Expectation operator.

;; Mode shape vector.

L, Vector of multipliers.

A State (transition) matrix.

C Output (observation) matrix.
x,. State vector.



A; Auto-Regressive coefficient matrix.
B; Moving Average coefficient matrix.

1 INTRODUCTION

In traditional modal analysis the modal parameters are obtained from the Frequency Response
Functions, i.e. the function relating the output (the response) and the input (the loading). Thus, in
traditional modal analysis the mput must be known. For smaller structures that can be tested in the
laboratory, or for larger structures that can be excited artifially without significant problems, this
approach should be preferred.

For larger strutures however, the traditional approach is often difficult to implement. Ifthe structure
is large like a suspension bridge or a dam, it might be difficult to artifially load the structure to a
level where the response from the background loading like vind or other types of non-controllable
laoding is small compared to the response from the artificial loading. Even in the cases where this
is possible problems migh arise from non-linearities mtroduced by exciting the structure to a higher
response level. Applying articial loading might also be expensive and involving a nisk of damaging
the structure.

Thus, for large strucures, the natural solution is to measure the natural responses, also denoted the
ambient responses, and then analyse them to obtain the same information that could be achieved
from a traditional modal analysis test. In stead of loading the structure artificially and dealing with
the natural loading as an unwanted noise source, the natural loading is used as the loading source.
The main advantages of this kind of testing are:

- Testing is cheap and fast, since big equipment for
excitation is not needed,

- Testing does not interfere with the operation of the
structure,

- The measured response is representative for the real
operating conditions of the structure.

However, using this kind of testing, responses are small, and often partly covered i noise. Further,
the loading is unknown, and, thus, the analysis becomes more difficult than in
traditional modal analysis. The main draw-backs are:

- very sensitive equipment needed,

- careful data analysis needed.
These drawbacks are the mamn reasons that these kinds of techniques have not been used in large
scale in the past. Now, however, the problems are vanishing: The last few years prices on high

quality equipment has dropped significantly, analysis techniques are developing, and the necessary
large scale computer analysis can now be performed on a PC.



The theory behind the four different methods is briefly reviewed in section 2. In section 3, the test
structure, a Swiss highway bridge, as well as the test procedure and the practical aspects of using
the four different methods, are presented. Section 4 presents the results.

In this paper four methods of ambiemt reposnse analysis is briefly introduced and compared. The
methods are the frequency domain peak-picking (PP) method, the polyreference LSCE (LSCE)
method, a stochastic subspace identification technique for estimation of state space systems (SSI),
and the prediction error method (PEM) applied to Auto-Regressive Moving Average Vector
(ARMAV) models

2 APPLIED IDENTIFICATION TECHNIQUES

2.1 Peak-Picking

A fast method to estimate the modal parameters of a structure based on output-only measurements
is the rather simple peak-picking method. The method is widely used and one practical
implementation of the method was realized by Felber, see Felber [1]. In this implementation the
natural frequencies are determined as the peaks of the Averaged Normalized Power-Spectral
Densities (ANPSDs). The ANPSDs are basically obtained by converting the measured data to the
frequency domain by a Discrete Fourier Transform (DFT). The coherence function computed for
two simultaneously recorded output signals has values close to one at the natural frequencies, see
Bendat et al. [2]. This fact also helps to decide which frequencies can be considered natural. The
components of the mode shapes are determined by the values of the transyer functions at the natural
frequencies. Note that in the context of ambient testing, fransfer function does not mean the ratio
of response over force, but rather the ratio of response measured by a roving sensor over response
measured by a reference sensor. So every transfer function yields a mode shape component relative
to the reference sensor. It is assumed that the dynamic response at resonance is only determined by
one mode. The validity of this assumption increases as the modes are better separated and as the
damping is lower. The method has been used successfully for a large amount of structures, see
Felber et al. [3].

2.2 Polyreference LSCE applied to Auto- and Cross-Correlation Functions

On the assumption that the system is excited by stationary white noise it has been shown that
correlation functions between the response signals can be expressed as a sum of decaying sinusoids,
see James et al. [4]. Each decaying sinusoid has a damped natural frequency and damping ratio that
is identical to that of a corresponding structural mode. Consequently, the classical modal parameter
estimation techniques using impulse response functions as input like Polyreference LSCE,
Eigensystem Realization Algorithm (ERA) and Ibrahim Time Domain are also appropriate for
extracting the modal parameters from response-only data measured under operational conditions.
This technique is also referred to as NExT, standing for Natural Excitation Technique, see James
et al. [4]. In this paper the discussion will be limited to polyreference LSCE.

The correlation functions between the outputs and a set of outputs serving as references are defined
as:

R, = EWpur, Yripm] € BT )

»,€R* is the output vector containing / channels, y,q.,,‘em’"f‘ ! is a subset of y, contamng only the
1, references, and Ef] denotes the statistical expectation. The correlation finctions can be
estimated by replacing the expected value operator in (1) by a summation over the available



measurements. Using the unbiased DFT this calculation can be performed significantly faster. If
the unbiased DFT is not used, the results will be biased by leakage, and the damping will be over-
estimated.

The polyreference LSCE yields global estimates of the poles and the modal reference factors [5].
Mathematically, the polyreference LSCE decomposethe correlation functions in a sum of decaying
sinusoids:
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where #, is the number of poles; ¢,eC™ is the r mode shape; A, =e" is the r complex discrete
system pole (related to the continuous system pole p, and the sample time Ar); L eC~" is a vector
of multipliers which are constant for all response stations for the » mode. Note that m conventional
modal analysis, these constant multipliers are the modal participation factors. In case of output-only
modal analysis, they will be further referred to as the modal reference factors. It can be proved that
if the correlation data can be described by (2), it can also be described by the following model:

RI+R_ F 4+ ... +R_F,=0 3)

if the following conditions are fulfilled:
L7+ 2R, + .+ A7) = 0 (4)
Logxi 2 2n, )

Equation (3) represents a coupled set of [, finite difference equations with constant marnx
coefficients (F,,...F,eR="~). The condition expressed by (4) states that the terms 4, L, are
characteristic solutions of this system of finite difference equations. As (3) is a superposition of 27,
of such terms, it is essential that the condition given by (5) is fulfilled.

Polyreference LSCE essentially comes down to estimating the matrix coefficient F,,....F,. Once
these are known, (4) can be reformulated into a generalized eigenvalue problem resulting into 7, xi
eigenvalues 1, yielding estimates for the system poles v, and the corresponding left eigenvectors
L. Equations similar to (3) can be formulated for all possible correlations R,. The obtained over-
determined set of eguations can than be solved in a least squares sense to yield the matrix
coefficients F,,...,F,. The order i of the finite difference equation is related to the number of modes
in the data.

Contrary to the stochastic subspace and ARMAV methods (cf. the next two sections), the
polyreference LSCE does not yield the mode shapes. So, a second step is needed to extract the mode
shapes using the identified modal frequencies and modal damping ratios. This can be done either
by fitting the correlation functions in the time domain or by fitting the power- and cross-spectral
densities in the frequency domain, see Hermans et al. [6].

2.3 Stochastic Subspace Identification

Unlike the two previous methods the stochastic subspace identification method directly works with
the recorded time signals. The peak-picking method requires frequency domain data while the
polyreference LSCE method needs the correlation functions between time signals. It is beyond the
scope of this paper to explain in full detail the stochastic subspace identification method. The
interested reader is referred to Van Overschee et al. [7,8], Kirkegaard et al. [9] and Peeters et al.



{10,117 for the theoretical background and applications in civil engineering. Here only the main
ideas behind the method are given. The method assumes that the dynamic behaviour of a structure
excited by white noise can be described by a stochastic state space model:

X, = Ax, +owy,

Y = ka + v, (6)
where x eR™"' is the mternal state vector; 7, is the number of poles; v,cB*! is the measurement
vector and w,,v, are white noise terms representing process noise and measurement noise together
with the unknown inputs; 4 <E”>** is the state matrix containing the dynamics of the systemand CeR"*
is the output matrix, translating the internal state of the system into observations.

The subspace method then identifies the state space matrices based on the measurements and by
using robust numerical techniques such as QR-factorization, Singular Value Decomposition (SVD)
and least squares. Roughly, the QR results in a significant data reduction, whereas the SVD is used
to reject the noise (assumed to be represented by the higher singular values). Once the mathematical
description of the structure (the state space model) is found, it is straightforward to determine the
modal parameters (by an eigenvalue decomposition): natural frequencies, damping ratios and mode
shapes.

2.3 ARMAY Estimation using a Prediction Error Method

Just like the stochastic subspace identification method the Prediction Error Method for estimation
of ARMAYV models works directly with the recorded time signals. A detailed description of the
Prediction Error Method is provided in Ljung [12] and Séderstrom et al. [13], and a comprehensive
description of the use of ARMAV models m relation to civil engineering and mechanical
applications is found in Andersen [14] and Pandit [15]. It can be shown that the ARMAV model
can model the dynamics of a structure subjected to filtered white noise, see Andersen [14]. In other
words, the only restrictions are that the structure behaves linearly and is time-invariant, and that
the unknown input force can be modelied by a white noise filtered through a linear and time-
invariant shaping filter. The definition of the ARMAV model is:

v, +4 v, +,,_+A"y =
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where y, e is the measurement vector and e eR*!is a zero-mean white noise vector process. The
auto-regressive matrix polynomial is described by the coefficient matrices A,®*’. This polynomial
models the dynamics of the combined system, i.e. the modes of the structural system combined with
the noise modes. The moving average matrix polynomial is described by the coefficient matrices
B,eR*_ This polynomial ensures that the statistical description of the data is optimal. It can be
shown that by adding this moving average the covariance function of the predicted output y,of the
ARMAYV model will be equivalent to the covariance function of y,, see Andersen et al. [16]. The
model order # depends on the number of modes as well as on the dimension of the measurement
vector.

The ARMAYV model is calibrated to the measured time signals by minimizing the prediction error
¥, ¥,, L& the difference between the measured time signals and the predicted output of the ARMAYV
model. The criterion function ¥ that is mmimized is defined as, see Ljung [12] and Andersen et al.
[17]:

v = aaf L3 b, sy ®



This criterion function can be shown to correspond to a maximum likelihood if the prediction errors
are Gaussian white noise, see Soderstrém et al. [13]. In this case the criterion provides maximum
accuracy [Séderstrom]. The presence of the moving average makes it necessary to apply a non-
linear optimization scheme. This minimization is started by providing an initial ARMAYV model.
In the present case this model is obtained by a stochastic subspace method, see Andersen [14].
Again, once the optimal ARMAYV model is determined by a stabilization diagram, it is
straightforward to determine the modal parameters by a modal decomposition.

3 HIGHWAY BRIDGE TEST CASE

The bridge, used as test object to illustrate the above mentioned system identification methods, is
the Z24-bridge overpassing the national highway Al between Bern and Ziirich in Switzerland. It
is a prestressed concrete box girder bridge with a main span of 30 m and two side spans of 14 m.
The bridge is supported by 4 piers clamped into the girders. The two piers at the abutments are
completely embedded in the ramps.

3.1 Description of the Acquired Data

In total, 145 poimts were measured, mainly in the vertical and transverse direction. This amounted
to 172 degrees of freedom (DOFs). The same number of channels would have been necessary to
measure all the DOFs at the same time. As a maximum of 23 channels were available the testing
were divided into 9 setups. In each setup 19 different DOFs on the bridge were measured, along
with 4 extra DOFs serving as references (3 in vertical direction and 1 in the transverse direction).
These reference stations were measured again in each setup. The data were sampled at a rate of
80 Hz and the analogue anti-aliasing filter had a cut-off frequency at 20 Hz. A total of 65536
samples (13 min, 39.2 sec) was acquired for each channel and each setup. The ambient excitation
sources of the bridge were wind and traffic on the highway. All setups were measured between
9 PM and midnight. More details concerning the bridge test can be found in Kramer et al. [18].

3.2 Practical Aspects of Using the Different Identification Techniques

For the peak-picking method, 16 segments of 4096 data points were transformed to the frequency
domain and averaged to estimate the power-spectral densities. So all measured data were used in
this method. By applying the procedures described m paragraph 2.1, estimates of the natural
frequencies and mode shape parts were obtained. Every setup with 23 simultaneously recorded
signals yields the mode shape at the corresponding 23 DOFs. The different parts were glued
together using one of the reference sensors (the choice of the reference sensor depends on the narure
of the mode shape).

The polyreference LSCE method was applied to the auto- and cross-correlations of the responses.
For each setup, the correlations between all responses and 3 responses in the vertical direction
serving as references were calculated using equation (1). The number of estimated time lags
equalled 256 which corresponds to a duration of 3.2 sec. The correlation functions were then fed
to the LSCE method in order to extract the natural frequencies and damping ratios. As the
correlation functions of the different setups were referenced to the same 3 reference stations, they
could be combined into one global model, yielding global estimates for the frequency and damping.
Stabilisation diagrams showing the stability of the poles as function of increasing model order were
used to distinguish the spurious modes from the physical ones. Next to this global analysis, the
modal parameters were also separately extracted for each setup and a comparison of the modal



estimates was made. As the LSCE method does not yield the mode shapes, an additional step was
needed. This was done by fitting the power- and cross-spectral densities between the responses and
the selected reference stations in a least squares sense. The power- and cross-spectral densities were
estimated on the basis of the DFT and segment-based averaging. The segment size equalled 2048
time points and 50% overlap was used. A Hanning window was used to reduce the leakage effects.
As the excitation was different for each setup, the mode shapes were separately identified for each
setup and glued together via the 4 reference stations. For setup 5, the power-spectral densities of
a few DOFs were difficult to fit, which leads to some irregularities in the animation of the mode
shape. Also, for most setups, the fit was poor for frequencies higher than 12 Hz and consequently,
the shape of the fifth mode (cf. next section) could not be extracted with high confidence.

For the stochastic subspace method it was not possible to treat all 65536 samples x 23 channels
of one setup at once. The computational time and memory needed can increase to an inadmissible
level with an increasing number of samples and channels. Therefore the analysis for all setups was
limited to a high-quality segment of 4096 samples. If such a segment did not give satisfactory
results, another segment was chosen afterwards to perform a new analysis. The number oftime lags
used in the method were 20; since there were 23 channels, the maximum number of smgular values
was 460 (20 x 23). Consecutive state space models of dimension 2 to 60 in steps of 2 were
identified. From all these state space models, the modal parameters were extracted. Stabilisation
diagrams were then used to distinguish the spurious modes from the physical ones. For every setup,
seven modes could be identified.

To applythe prediction error method for estimation of ARMAYV models, an accurate initial estimate
was needed. By supplying an accurate mitial estimate the number of iterations needed was kept at
a minimum and convergence was ensured. To provide such initial estimates, a subspace technique
returning ARMAYV models was applied, see Andersen [14]. The modal parameters of interest of the
initial ARMAYV models were then refined, one mode at a time, by minimizing (8) in modal space,
see Brincker et al. [19]. In the subspace estimation the number of time lags used were 30. All
available data were used, i.e. up to 65536 samples x 23 channels per setup. The orders of the
applied ARMAYV models were in the range from #=1 to n=5. Again, due to the differences of the
excitation from setup to setup, the mode shapes were separately identified for each setup and glued
together via the 4 reference stations.

4 COMPARISON OF MODAL RESULTS

The results of the comparison are presented in this section for the two first modes only. More
results might be found in Andersen et al. [20]

In the comparison of the mode shapes only the sensors located at the girder are included. These
sensors are placed in three rows along the girder, which means that each mode shape can be
represented by three curves. These three curves are plotted in the same figure for all four
techniques. Below the plots the Modal Assurance Criterion between the four techniques is listed in
a table. Also listed are the estimated natural frequencies, damping ratios, and standard deviations.
The 1st mode is a vertical bending mode. In the 2nd mode, the piers are bending i the transverse
direction and the girder is submitted to torsion.

In general, all methods seems to agree very well on the natural frequency estimates of the shown
modes. Also for the remaining modes, the different techniques agreed quite well on all modal
estimates. Even the damping ratio estimates correspond fairly well for three of the methods. The
damping ratios have not been estimated in the peak-picking method.



As 1t appears from the results, the mode shape estimates correlates quite well for all the techniques,
however, for the 2™ mode some differences are observed. The uncertainty is large around the poinis
where the reference poitns are situated. This problem illustrates the importance of making a good

choice for placement of the reference sensors.

Figure 1. Comparion of the first mode shape -

Figure 2. Comparison of the second mode shape

all four metods. - all four methods.
PP | LSCE | SSI PEM PP | LSCE | SSI PEM
PP 1 0.999 | 0.999 | 0.999 PP 1 3990 | 0,992 | 0.994
LSCE | 0.999 1 0.999 | 0999 LSCE [ 0,990 1 0.98% | 0.986
SSI 0.999 | 0.999 1 1 SSI 0.992 | 0.988 1 0.990
PEM 0.999 § 0.999 1 1 PEM | 0994 | 0.986 [ 0.990 1
Table 1: Modal Assurance Criterion of the 1st Table 3: Modal Assurance Criterion of the 2nd
mode shape, mode shape.
I i oHz] | of[%] £ g, o [Hz] | o[%]
(Hz [%] [Hz 1%]
FP 3.96 - - - PP 527 - - -
LSCE | 3.935 1.0 0.01 0.2 LSCE | 5.23 1.8 0.02 03
58I 3.93 11 0.02 0.5 SSI 5.2 1.4 0.02 03
M 3.95 1.1 0.01 03

Table 2: The natural frequencies and damping
ratios of the 1st mode.

PEM 524 1.7 0.02 05

Table 4: The natural frequencies and damping
ratios of the 2nd mode.




The advantages of the peak-picking method are that it is easy to use and provides fast estimates.
However, the damping has not been estimated, and since no parametric model is calibrated, the
mode shapes are in fact only operational deflection shapes. In the present case, where all modes are
well-separated, deflection shapes seem to approximate the mode shapes well. The advantage of the
LSCE method is its ability to identify modal parameters globally, even when data is divided into
multiple setups. In the present case. it is seen to provide sound estimates of the natural frequencies
and damping ratios that are comparable with the two other time domain methods. Since the mode
shapes are estimated in frequency domain they are more comparable with the peak-picking method
than the two time domain methods. The time domain methods have the advantages of operating
directly on the measured time signals. However, they are a bit more complicated to use, and more
time consuming. Different model orders have to be evaluated in order to determine the optimal one.
However, stabilisation diagrams and other model validation techniques can be of aid to the user.
The SSI method solves the time and memory problem by reducing the amount of data used in the
analysis. The PEM method and the mitial subspace estimator of ARMAYV models both use all
available data. However, due to the high quality data this does not seem to improve the modal
parameter estimates significantly.
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