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Abstract

In this paper it is explained how the damping can be
estimated using the Frequency Domain Decomposition
technique for output-only modal identification, i.e. in the
case where the modal parameters is to be estimated
without knowing the forces exciting the system. Also it is
explained how the naturat frequencies ean be accurately
estimated without being limited by the frequency
resolution of the discrete Fourier transform. It is
explained how the spectral density matrix is decomposed
into a set of single degree of freedom systems, and how
the individual SDOF auto spectral density functions are
transformed back to time demain to identify damping
and frequency. The technique is illustrated on a simple
simulation case with 2 clesely spaced mades, On this
example it is illustrated how the identification is
influenced by very closely spacing, by non-orthogonal
modes, and by correlated input. The technique is further
illustrated on the output-only identification of the Great
Belt Bridge. On this example it is shown how the
damping is identificd on a weakly exited mode and a
closely spaced mode.

Nomenclature

Power spectral density matrix
Mode shapes

Angular frequency, frequency (Hz)
Singular vectors

Singular values

Logarithmic decrement

Modal damping ratio

MAC limit value
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Introduction

Output-only identification of structures is normaily
associated with the identification of modal parameters from
the natural responses of civil engineering structures, space
structures and large mechanical structures. Normally. in
these cases the loads are unknown, and thus, the modal
idenmtification has 1o be carried out based on the responses
only. Real case examples on some civil engineering
structures can be found in Ventura and Horyna [1] or
Andersen et al. [2].

The present paper deals with the problem of damping
estimation using a relatively new technique for output-only
identification called Frequency Domain Decomposition
{(FDD). The technique is described in Brincker et al {3]. [4]

The technique is closely related to the classical frequency
domain techniques where the modes are identified by
picking the peaks in the spectral diagrams. Bendat and
Piersol |53], Felber [6]. However, since the FDD technigue
approximately decomposes the spectral density matrix intoa
set of SDOF systems using the Singular Value
Decomposttion (SVD), the main part of the uncertainty of
the classical technique is removed.

In this paper it is explained more detailed how the SDOF
auto spectral densitics are identified using the modal
assurance criterion (MAC), how the bells are transformed
back to time domain. and how the damping and more
accurate natural frequency estimates are identified from (he
corresponding free decays,



Identification Algorithm

[n the Frequency Domain Decomposition (FDD)
identification, the first step is to estimate the power speciral

density matrix. The estimate of the output PSD G wljw)

known at discrete frequencies @ = @ ;18 then decomposed

by taking the Singular Value Decomposition (SVD) of the
matrix

GJ)'U(«'),—) = UiSz'U,'H .

where the matrix {7 ;= [uﬂ M., u,-m] is a unitary

matrix holding the singular vectors #,; . and S is a

diagonal matrix holding the scalar singular values s g - Near

:
apeak corresponding to the 4 th mode in the spectrum this
mode or may be a possible close mode will be dominating,
Thus, according to the FDD theory. the first singular vector

1,1 1s an estimate of the mode shape

b=u, (2)

and the corresponding singular value is the auto power
spectral density function of the corresponding single degree
of frecdom system. This power spectral density function is
identificd around the peak by comparing the mode shape

estimale ¢A with the singular vectors for the frequency lines
around the peak. As long as a singular vector is found that
has high MAC value with 1;5 the corresponding singular
valuc belongs to the SDOF density function. If at a certain
lmc none of the singular values has a singular vector with a
MAC value larger than a certain limit value £ | the search
for matching parts of the auto spectral density function is

terminated. The remaining spectral pins (the un-identified
part of the auto spectral density function) are set to zero.

From the fully or partially identified SDOF auto spectral
density function, the natural frequency and the damping are
ibtained by taking the spectral density function back to time
domain by inverse FFT.

From the free decay time domain function, which is also the
auto correlation function of the SDOF system, the natural
frequency and the damping is found by estimating crossing
times and logarithmic decrement. First all extremes r,.

both peaks and vatleys, on the correlation function are

found. The logarithmic decrement & is then given by

_2.
c”?—kln(rrkJ 3)

where ¥y is the initial value of the corrclation function and

73, is the k'th extreme. Thus, the logarithmic decrement and
the initial value of the correlation fumction can be found by
linear regression on k5 and 21r1(|rk l) . and thc damping
ratio is given by the well known formula
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A similar procedure is adopted for determination of the
natural frequency. The frequency is found by making a
linear regression on the crossing times and the times
corresponding to the extremes and using that the damped

natural frequency f; and de undamped natural frequency
[ is related by

(5)

The extreme values and the corresponding times were founa
by quadratic interpolation, whereas the crossing times where
found by linear interpolation.

Simulation case, closely spaced modes

The technique is illustrated on a case with 2 closcly spaced
modes. The response of a 2 DOF system is simulated using a
vector ARMA model, Andersen [7], and assuming that both
degrees of freedom are loaded by Gaussian distributed white
noise un-correlated processcs. Exact and identified modal
parameters are shown in Tables 1 and 2.

The first case considered is a case with a reasonable spacing
between the two modes. An auto spectral density and the
singular values of the decomposed spectral matrix are shown
in Figure 1. As it appears. the two modes are clearly visible
in both plots. Partial identifying of the auto spectral densities
of the two SDOF systems using the MAC as described
above vields the result as shown in Figure 2.

Taking the inverse discrete Fourier transform of the partially
identified auto spectral densities yields the corresponding
auto correlation estimate as shown in Figure 3, bottom. Top
part of the same Figure shows the linear regression on the
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Figure 1. Case I with moderately spaced modes. Top: Auto
speciral density. Bottom: Singular values of the decomposed

spectral density matrix.
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Figure 2. Partial identification of the two SDOF auto
spectral density functions.
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Figure 3. Top: Linear regression on extremes for estimation
of damping. Bottom: Time domain free decay obtained by

inverse FFT and estimated damping envelope.
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Figure 4. Case 2 with closely spaced modes. Top: Partial
identification of SDOF auto speciral density. Bottom:
Corresponding free decay with damping envelope.
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Figure 5. Case 3 with closely spaced modes, but where on
a very limited part of the SDOF densily is identified.
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Figure 6. Case 4 with moderately spaced modes. Mode
shapes not orthogonal.
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Figure 7. Case 5 with moderately spaced modes. Correlated
input.

extremces, and the bottom parts compares the free decay
function with the estimated damping envelope. As it
appears, the procedure is quite strait forward and the user
has a clcar impression of the validity of the cstimation
simply by inspecting the plots.

The sccond case considered is the case of closely spaced
modes as shown in figure 4. In this case it is assumed that a
reasonable part of the SDOF auto spectral density can be
identificd on both sides of the considered modal peak. This
is possible in the most cases by specifving a lower 1 -
valuc. In this case. the identification is also strait forward
and the identified damping values compares reasonably well
with the theoretical values, Table 2.

In the third case it is assumed that only a quite small part of
the SDOF anto spectral density function can be cstimated.
This can be the casc if the speciral density is noisy due 1o
limited data. or if noise is contaminating the signal. In this
casc however, since the data arc simulated data meeting all
basic assumptions of the technique, the identified SDOF
density function shown in Figure 5 was obtained by using a
rather high value of the MAC 1imit €2 . As it appears. since
the number of active pins in the spectrum is cut
significantly, the Fourier series in the time domain becomes
trunciicd to a degree where the damping becomes
undercstimated, Table 2.

The fourth case shown in Figure 6 illustrates the influence of
non-orthogonal modes. In theory, {0 give exact results, the
FDD requires that the modes are orthogonal. All other cases
considered in this paper have orthogonal modes. For the

modes considered in this cases. the MAC matrix is

1.0000 0.4226
MAC =
0.4226 1.0000

In this case, the SVD still split the spectral matrix in
orthogonal components. This means, that even though the
dominant singular value and the corresponding singular
vector is a good estimate of the modal properties, the second
singular value and the corresponding vector is not so closely
related to the physics of the system. Thus, the right most
part of the left mode is badly estimated. Even though this is
the case, the modal damping estimate is still close to the
exact value, Table 2.

For the last considered case. case five, the loading is
moderately correlated. In case of correlated input the FDD
modal decomposition is approximate. In most practical cases
however. like wind loads, wave loads or traffic loads. it is
known that a certain spatial correlation is present. Thus it is
important to know the amount of influence such correlation
might have on the modal resnlts. In this case the correlation
matrix between the two stochastic processes loading the
system was

1.0000 0.4724
0.4724 1.0000

The results of the modal identification and the
corresponding damping estimation of the first mode are
shown in Figure 7. Again we see a certain distortion of the
identified auto spectral density of the associated SDOF
sysiem in the overlapping region between the two modal
pcaks. However, the influence is rather small, the damping
cstimation is strail forward, and the cstimated damping is
close to the cxact values, Table 2. Thus, moderate
correlation does not seem to significanily influence the
quality of the results.

Damping identification of the Great Belt Bridge

In the following the efficiency of the proposed damping
identification iechnigue is illusirated on ambienl response
data of the Great Belt Bridge. The Great Belt Bridgc is a
suspension bridge with a free span of 2.6 kin.

Different ways of identifving the modal damping of this
bridge including the application of the FDD techniquc as
described here is investigated in Brincker ct al. [8].

In the following it is illustrated how the identification works
on two difficull cases often realised in practical output-only
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Figure 8. Singular values of the spectral density matrix
obtained from the ambient response of the Great Belt
Bridge.
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Figure 9. Partially identification of auto spectral density
associated with a weakly excited mode.
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Figure 1. Partially identification of auto spectral densitv
associated with a closely spaced mode.

identification: a weakly excited mode and a closely spaced
mode.

The weakly excited mode is indicated in figure 8. As it
appears it 50 weakly excited that only a careful inspection of
the singular value decomposition of the spectral matrix or of
the anto and cross spectral densities reveals that a mode is
present. It is well known, that when using parametric
methods like ARMA models or the Stochastic Subspace
Identification atgorithm, or partly parametric techniques like
the Ibrahim Time Domain, the Eigen Realisation Algorithm
or the Polyreference identification technique, it is normally
very difficult to get reliable modal estimates and especially
damping estimales in a case like this.

Figure 9 shows that the FDD clearly identifies a reasonable
part of the auto spectral density of the associated SDOF
system, and a damping estimate that must be judged as
reliable can be obtained from the free decay function.

The closely spaced mode case is also indicated in Figure 8,
and this case is relatively difficult too. Even though most of
the parametric and partially parametric techniques identifies
closely spaced modes without major problems, this still is
difficult in cases like this with a high number of modes
present in the response.

As shown in figure 10, the FDD technique identifies a large
part of the awto spectral density of the associated SDOF
syslem, and the corresponding free decay in the time domain
must be considered as a good time representation of the
frequency domain irformation. In this case, the estimated
damping is very low, ¢ = (.24 %, and the correlation

function is far from being vanished for maximum time lag,
This indicates that the damping is biased by leakage
introduced in the estimation of the spectral density
functions.

Conclusions

In this paper the estimation of damping has been iniroduced
and illustrated for the Frequency Domain Decomposition
(FDD) output only identification technique.

The basic idea of the proposed identification procedure has
been illustrated on a 2-DOF simulation case where it has
been shown how the technique works in different cases of
closely spaced modes including non-orthogonal modes and
correlated input.

Further it has been illustrated how the technique works m
the case of identification of two difficult modes of the Great
Belt Bridge.



It can be concluded, that the FDD technique is a rcliable and
efficient modal estimator, that the damping estimation is
easily controlled by adjusting the MAC limit value (2 . and
that the quality is easily validated by inspecting simple plots
like the plots presented in this paper. The major errors
introduced is the error associated with the truncation of the
Fourier series for the time domain functions and the bias
introduced by the Icakage. As it is well known from the
literature, the truncation will course the damping to be
under-estimated whereas the leakage will cause the damping
to be over-estimated

The technique has been applicd successfully to several civil
engineering cases, Brincker cl al. [9] and to several cases of
identification in mechanical cngineering where the structure
was loaded by rotating machincry, Brincker et al. [10], [11]
and Moeller et al. [12].

Table 1. Exact and estimated natural frequencics

Case Exact Exact Estimate | Estimate
S H | f5 (Hz) S | £y ()
1 14.235 15916 14.241 13,907
2 15.532 15.916 15.508 15.896
3 15.532 15.916 15.526 15,888
4 14.309 15.834 14.433 15.679
5 14.235 15916 14.226 15.931
Table 2. Exact and cstimated damping ratios.
Casc Exact Exact Estimaic | Estimate
S (%) |6y (%) |61 (%) | Sy (%)
1 0.894 1.000 0.913 1.164
2 0.976 1.000 0.%66 0.938
3 0.97 1.000 0.670 0.579
4 2,225 2.539 2.589 3.113
5 0.894 1.000 1.083 0.986
References
I1] Ventura, Carlos E. and Tomas Horyna: “Structural

Asscsment by Modal Analysis in Western Canada™,
Proc. of the 15" International Modal Analysis
Conference, Orlando, Florida, Orlando. 1997.

2] Andersen, P, R. Brincker, B. Pceters, G. De Roeck,
L. Hermans and C. Krimer: “Comparison of
system Identification Methods Using Ambient
Bridge Test Data”, ™, Proc. of the 17" Intemational
Modal Analysis Conference, Kissimee, Florida,
1999,

[3] Brincker, R, L. Zhang and P. Andersen: Modat
Identification from Ambient Responses using

{41

[5]

6]

17]

[8]

[9

[101

ren

112]

Frequency Doman Decomposition, in Proc. of the
International Modal Analysis Conference (IMAC).
San Antonio. Texas, February, 2000

Brincker. R, L. Zhang and P. Andersen: Qutput-
Only Modal Analysis by Frequency Domain
Decomposition. in Proc. of the ISMA235 conference
in Leuven, Scptember 2000.

Bendat, Julius § and Allan G. Piersol: “Engineering
Applications of Correlation and Spectral Analysis”,
John Wiley & Sons, 1993.

Felber. A 1.: “Devclopment of a Hybrid Bridge
Evaluation System™. Ph.D. thesis, Department of
Civil Engineering, University of British Columbia,
Vancouver, Canada. 1993,

Andersen, P.. R. Brincker, and P.H. Kirkegaard:
“Theory of Covariance Equivalent ARMAYV
Modcls of Civil Engineering Structures™, Proc of
the 14™ International Modal Analysis Conference,

IMAC, Dearborn, 1996,

Brincker, R., J. Frandsen and P, Andersen:
“Ambicnt Response Analysis of the Great Belt
Bridge”, Proc. of the 18" International Modal
analysis Conference, San Antonio, Texas, February
7-10, 2000.

Brincker, R, P. Andcrsen: ~“Ambient Response
Analysis of the Heritage Court Tower Building
Structure”, Proc. of the 18% International Modal
analysis Conference, San Antonio. Texas. February
7-10, 2000.

Brincker, R., P. Andersen and Nis Moller.:
*Output-Only Modal Testing of a Car Body
Bubject to Engine Excitation™. Proc. of the 18%
International Modal analysis Conference. San
Antonio, Texas, February 7-10, 2000,

Brincker, R, P. Andersen and Nis Moller: “An
Indicator for Separation of Structural and Harmonic
Modes in Output-Only Modal Testing”. Proc. of
the 18" International Modal analysis Conference,
San Antomio, Texas, February 7-10, 2000.

Mailer, N., R. Brincker and P. Andersen; “Modal
Ext.racllon on a Diesel Engine in Operation™, Proc.
of the 18" International Modat analysis
Conference, San Antonio, Texas, February 7-10,
2000.



