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ABSTRACT

The design of a measurement program devoted to param-
eter 1dentification of structural dynamic systems i1s consid-
ered. The design problem is formulated as an optimization
problem to minimize the total expected cost that 1s the cost
of failure and the cost of the measurement program. All the
calculations are based on a priori knowledge and engineer-
ing judgement. One of the contribution of the approach i1s
that the optimal number of sensors can be estimated. This
is shown in an numerical example where the proposed ap-
proach is demonstrated. The example 1s concerned with
design of a measurement program for estimating the modal
damping parameters in a simply supported plane, vibrating
beam model. Results show optimal number of sensors and
their locations.

NOMENCLATURE

: The total expected cost.
. Cost of failure.
: Cost of measurement program.

: Cost of planmng and instrumentation.

: Cost of an additional sensor.

: Measuring time.
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Pg: Probability of failure.
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. Experiment design variables.

n.: Number of the experiment design variables.

- Number of random variables in X.

- Random vector of correlated and non-normal vari-

ables.

Realization of random vector X.

- Failure function.

Deterministic parameters.
Transformation.
Random vector of normally distributed variables.

Realization of random vector U.

. Element reliability index.

. System reliability index.

Normal distribution function.



m-dimensional normal distribution function.

Correlation coefficient matrix.

: Expectation of X.

Covariance matrix for X.

: Vector of unknown parameters.

. Number of parameters in 8.

. Estimate of 8.

: Covariance matrix for O.

Fisher Information Matrix

Expectation operator.

: Joint conditional probability density function of mea-

surements y™.

: Number of measurements.
: Number of measurement points.

: Number of significant failure modes.

. Standard deviation of ©.

: Conditional reliability index vector.
. Conditional correlation coefficients.
: Bending stiffness.

: Mass per unit length.

: Viscous damping coefficient.

: Time parameter.

. Space parameter.

: Length of beam.

: The Dirac delta function.

;: The Kronecker function.

: Deflection of the beam.

: The load on the beam.

: Realization of the stochastic load process {V(¢)}.
: Generalized coordinate.

: Mode shape.

. Modal damping ratio.

: Fatigue damage.

: Expected lhifetime.

: Standard deviation of stress process.
: Mean period of a stress cycle.

-): Gamma function.

: Parameter in the SN-curve.

. Parameter in the SN-curve

. Realization of the stochastic measurement noise pro-

cess {Y(zi,t)}.

- Variance of the measurement noise.

L.INTRODUCTION

The experiment design problem in dynamic system iden-
tification is to choose the experimental conditions so that
the information provided by the experiment i1s maximized.
The choice of experimental conditions for dynamic systems
1s known to have a significant bearing upon the achievable
accuracy in parameter estimation experiments. In general,
determination of the optimal experiment design, choice of
the experimental conditions, leads to a highly complex op-
timization problem, requiring the simultaneous choice of
identification algorithm, model and parameterisation, sen-
sor type and location, actuator type and location, input ex-
citation signal etc. Representative and excellent surveys of
this area of are given in e.g. Goodwin et al. (1], Zarrop {2],
Mehra [3] and Goodwin [4]. Generally, comparing different
experimental designs 1s based on the estimator covariance
matrix. Scalar functions of this estimator covariance matrix
are used as experiment design criteria. In order to reduce
the overall complexity of the experiment design problem, it
can be assumed that the choice of 1dentification algorithm
1s restricted to the class of efficient estimators, e.g. the
maximum likelithood estimator. This uncouples the choice
of identification algorithm from the overall experiment de-
sign since for any eflicient estimator the covariance of the
parameter estimates 1s a mimimum. This minimum covari-
ance can be estimated in terms of the Cramer-Rao lower

bound or equivalently the inverse of the Fisher Information
Matrix, see e.g Goodwin et al. [1].

However, when designing a measurement program the fi-
nancial cost of the measurement program also has to be
taken into account. The acquisition of additional informa-
tion, such as performing a full-scale measuring of a struc-
ture will of course require the time, energy, and financial re-
sources. The increased cost for this new information should
be 1ncluded or reflected in design of a measurement pro-
gram. The increased cost may be justified if it eliminates a
significant part of the uncertainty, thus leading to a lower
expected probability of failure of the structure.

In this paper a method to determine an optimal measure-
ment program devoted to parameter identification of struc-
tural dynamic systems 1s formulated. The problem is for-
mulated as an optimization problem where the objective
function 1s the total expected costs that is the costs of fail-
ure and costs of the measurement program. The cost func-
tion 1s introduced to make a trade-off between benefit of
the new information achieved from the experiment and the
costs of the measurement program. One of the main contri-
butions of the method is that the optimal number of sensors
can be estimated. The method is especially developed for
dynamically sensitive structures where the reliability of the
structural system 1is sensitive to the dynamic parameters.
In section 2 the optimization problem is formulated where



structural reliability theory is briefly presented since the
formulation is based on reliability methods. The connec
tion between the design variables and the total expected
cost due to failure is established using modern reliability
methods. Next, in section 3, the calculation procedures are
presented and finally, in section 4, an example is given us-
ing the proposed method. The example is concerned with
optimal design of a measurement program for optimal iden-
tification of the damping parameters in a vibrating beam.

The design variables are number of sensors and location of
SEISOrs.

2. RELIABILITY BASED DESIGN OF A MEASURE
MENT PROGRAM

2.1 Optimization Problem

In order to design an optimal measurement program it is
suggested to minimize the total expected cost including cost
of failure and the cost of the measurement program. The

optimization problem of an optimal measurement program
1s formulated as

min  C(Z) = CpPp(Z) + Cpm(2) (1)
st Zi<Z;<Z" 1 =1,2,...,N. (2)

where Z is a vector containing N, design variables, e.g
sampling rate, number of sensors, location of sensors etc.
Cr is the the cost of failure and Cjs is the cost of the
measurement program. The expected total cost C is the
objective function . Pr is the updated probability of fail-
ure after the measurements have been performed. As con-

—

straints upper and lower limits on the design variables Z
are given

2.2 Modelling of the Cost Function

One of the difficulties with the above optimization problem
1s how C'r and Cps may be modelled.

When a structure fails it is necessary to pay various costs
such as repair costs, reconstruction costs, clean-up costs.
loss of mncome, costs due to loss of social prestige and pos-
sible deaths. The total cost of failure Cp may range from
e.g. 2 to 9 tiumes the initial cost of a structure, see e.g.

Marshall [5]

The costs of obtaining the new information Cps is to cover
not only the sample records but also the cost of statisti-
cal analysis of the information and an appropriate share of
costs of planning. A simple and useful function for the cost
of a measurement program is Cpy = Co + C1Ty + Ca2 N,
see Ang et al. [6] . Cy may be interpreted as representing
the cost of the instrumentation and planning. C; may be
interpreted as an additional cost per sample record with
the length T, . Cs 1s the cost of an additional sensor. In
some cases a more complicated cost function can be used,

e.g. when a learning effect is introduced in the statistical
analysis.

2.3 Structural Reliability Theory

The probability of failure Pr in (1) is estimated using the
first-order reliability methods (FORM). First order relia-
bility methods have been extensively applied in the last
decade, where considerable progress has been made in the
area of structural reliability theory, see e.g. Madsen et al.[7]

A reliability analysis 1s based on a reliability model of the
structural system. The elements in the reliability model
are failure elements, modelling potential failure modes of
the structural system, e.g. fatigue failure of a weld. Each
failure element is described by a failure function ¢(Z,p) =
0 in terms of a realization T of a random vector X =
(X1, X9,..,X,), and determinististic parameters p, i.e. de-
terminististic design parameters and parameters describing
the stochastic variables, (expected value and standard devi-
ation). X is assumed to contain n stochastic variables, e.g.
variables describing the loads, strength, geometry, model
uncertainty etc. Realizations F of X, where g(T,p) < 0 cor-
respond to failure states in the n-dimensional basic variable
space, while g(z,p) > 0 correspond to safe states.

In first-order reliability methods (FORM) a transformation

T of the generally correlated and non-normally distributed

variables X into standardized, normally distributed vari-

—_—  —

ables U = (U1, Uy, ..,Uy) is defined. Let U = T "(X,p).
In the w-space the reliability index j3; is defined as

- min (ET'&')% (3)
g(T(u),p)=0

Bi

|

If the whole structural system is modelled, as a series sys-
tem, by m failure elements, and failure of the system is
defined as failure of one failure element, then a general-
ized systems reliability index 3° of this series system can
be estimated from, see e.g. Madsen et al. [7]

p*=—-27(1 - 2,(8;p)) (4)

where ®(-) and ®,,(-) are the normal distribution function
and the m-dimensional normal distribution function, re-
spectively. B = (B1,82,..,8m) are the reliability indices of
the m most significant failure elements determined by the
FORM analysis. The elements in the correlation coefficient
matrix p are determined in the FORM analysis. The prob-
ability of failure is

Pp = &(-5°) (5]

2.4 Estimation of Covariance Matrix



In this section we establish the connection between the
probability of failure Pr and the design variables Z.

Above 1t 1s shown that the probability of failure can be es-
timated from a system reliability index ° based only on
the first two moments, expectation jiz and covariance ma-

:ciix 5f. Normally, it is assumed that the random vector
X models the following four sources of uncertainty: Inher-

ent variability, estimation error, model imperfection and
human error.

Inherent variability, often called randomness, may exist in
the characteristics of the structure itself or in the environ-
ment to which the structure is exposed.

Estimation error arises from the incompleteness of statisti-
cal data and our inability to accurately estimate the param-
eters of the probability models that describe the inherent
variabilities. Model imperfection arises from our use of ide-
alized mathematical models to describe complex phenom-
ena. Finally, the human error uncertainty arises from errors

made by engineers or operators in the design, construction
or operation phases of the structure.

Inherent variability is essentially a state of nature and the
resulting uncertainty may not be controlled or reduced, i.e.
the uncertainty associated with inherent variability is some-
thing we have to live with. The uncertainty associated with
estimation error, model imperfection and human error may
be reduced through the acquisition of additional data, the
use of more accurate models and implementing rigorous

quality control measures in the design, construction and
operation phases of a structure.

The available statistical information, objective and subjec-
tive, on relevant variables and the set of mechanical and
probabilistic models and their associated error estimates
constitute the state of knowledge in a reliability problem.
The state of knowledge is said to be perfect when com-
plete statistical information and perfect models are avail-

able; otherwise, the state of knowledge is said to be im-
perfect. Real engineering problems invariably deal with

imperfect states of knowledge.

The parameters we want to estimate by a full-scale measur-
ing are modelled by the vector 6. # contains nj parameters,

—

e.g. modal parameters. The random vector © is an esti-

O is included in X. In

this paper we only consider the statistical uncertainty of

p—

mate of the parameter vector 6.

the parameter estimates which has to be expected from an
experiment with the the design variables Z. This means

that the connection between the covariance matrix _C_g. for

O due to estimation error and the design variables Z has to
be established. The covariance matrix 6-5 1s a function de-
pending on the estimiator assumed to be used in the exper-
iment. Here, it is assumed that the choice of identification
algorithm 1s restricted to the class of eflicient estimators.
These estimators have minimum covariance of the parame-

ter estimates. The covariance can be estimated in terms of
the Cramer-Rao lower bound, see e.g. Goodwin et al. [1]

Cs=J"" (6)

where J is the Fisher Information matrix given by

7 = B { (31032(5_"‘@))?" (alog g(ggm@)) } -

and where log p(g™|#) is the joint conditional probability
density function of the N measurements

Yy = {gm(tk)ak — 1121“'?N} (8)

Yy (t)1s an N,-dimensional output measurement vector which
is a realization of a stochastic process {Y  (t)}. N, is the
number of measurement points.

2.5 Calculation Procedures

Equations (1)-(7) provide the basis for designing a measure-
ment program. The calculation procedure is as follows:

1) Estimate the covariance matrix (7) based on a struc-
tural model, a priori knowledge of data properties,
engineering judgement, experimental design variables

and a best prior mean estimate of ©

Calculate 8° from (4) based on the structural model, a
priori knowledge of data properties, engineering judge-
ment, experimental design variables and a best prior
mean estimate and the estimated covariance matrix for

O.
3) Calculate the total expected cost (1).

A
S’

4) Determine a better estimate of the design variables.
5) Repeat 2), 3) and 4 to achieve convergence.

6) Make a sensitivity study of the measurement program
design for various values of the prior mean estimate of

©. (This point will not be performed in the example.).

The reliability calculations in this paper are performed with
the computer program PRADSS, see Sgrensen [§].

The non-linear optimization problem (1) - (2) can be solved
using any general non-linear optimization algorithm. In
this paper the optimization problems are solved using the
NLPQL algorithm, see Schittkowski [9]. The NLPQL algo-
rithm is a effective method where each iteration consists of
two steps. The first step is a determination of the search
direction. The second step is a line search. Since the esti-
mation of the system reliability index 1s very time- consum-
ing it can be convenient to reduce the number of objective

function calls. This can be done if instead of NLPQL an-
other optimization algorithm is used which converges faster



in the line search.

The number of function calls can also be reduced if the gra-
dient which NLPQL requires is estimated semi-analytical
and not numerical. The derivative of the objective func-
tion C with respect to a design variable Z; is

oC o O(—8%) 9C pr
57, ~ @(—F°) 57, Cr + az. - (9)

where (-} is the standard normal density function. The

last term in (9) is easy to estimate analytically. The deriva-
tive of the system reliability is

8B° <& 9B Oos
97, = 2 - (10)

where 06, 1s the standard deviation of é The derivative

T&.
;5, can be estimated numerically. The derivative 33;3
%9;

follows from (4)

0 —a —q. 0
E)aﬂ 99(13 ) Z@mml(ﬁk;ﬁk)@(ﬁk)a L

where the correlation cofficient terms are neglected. It
should be mentioned that convergence problems can be ex-

pected in optimization problems by neglecting the corre-

lation cofficient terms. In (11) it is assumed that the m

significant failure modes are numbered 1,2 , M. ,8 and
—

p; are the conditional reliability indices and correlation co-

(11)

Cféj

efficients, respectively, see Sgrensen [10]. The derivative of

the element reliability index is estimated from, see Madsen
et al. [7]

aﬂ B iu“a{TI l(ﬂik,p)} (12)
k 1—1

809 80'9_

] J

where * indicates values at the design point.

3. EXAMPLE

[n this section, an example is given to demonstrate the pro-
posed optimization procedure.
with optimal sensor location for identification of the modal

damping parameters in a simply supported plane, vibrating
Bernoulli-Euler steel beam model, see figure 1. The design
variables are number of sensors N, and location of sensors

z;. The design variable vector is defined by
Z = (N,,z1,22,..,z28. )7 (13)

where T indicates a transposed vector

The example is concerned

El
. Y

Figure 1. Bernoulli-Euler beam model.

3.1 Structural Model of Vibrating Beam

We assume that the equation of motion for the beam is
given by

&y(2,1) Oy(z,t)  , 9%y(z,1)
o TC T TM o
where y(z,1) is the deflection of the beam at time ¢ and dis-
tance z from its end. L is the beam length, M is the beam
mass per unit length, C'; is the viscous damping coefficient
per unit length and ET is the bending stiffness of the beam.
The beam load is modelled as a motion v(¢) normal to the

beam axis at the right base. This means that

EI

— P(z:t,) (14)

P(z,t) = —%Mﬁ(t) (15)

where (t) is a realization of a zero-mean stationary Gaus-
sian stochastic process {V(¢)} with a covariance given by

E[V(t1),V(t2)] = 8(t1 — t3) (16)

where ¢ is the Dirac delta function. What we have assumed
1s that the stochastic load is white noise with variance 1.

We assume that the solution for the displacement y(z,¢) is
y(z,t) = > q;(t)¢;(2) (17)
j=1

where g¢;(t) is a generalized coordinate and ¢;(z) is the
mode shape of the j'te mode. See e.g. Lin [11] for a solution
for ¢;(t) and ¢;(z). Here, three mode shapes are taken into
account. This means that the parameter vector 8 is defined

by
0 = ((1,(2,¢3)T (18)

where (; is the modal damping of the ith mode and 7T de-
The first

three flexible modal frequencies are given in Hertz as fol-

lows, 0.31, 1.23 and 2.77.

notes the transposed of the parameter vector.

3.2 Reliability Modelling

The beam is modelled as a series system with 7 fatigue fail
ure elements placed equidistantly. Each fatigue failure ele
ment 1s modelled by using the Palmgren-Miner rule in com-
bination with SN-curves. The stress process is assumed to
be zero-mean Gaussian narrow-banded. Here we don’t have
a narrow-banded process but the total damage is calculated
as an equivalent narrow-banded damage. Then the accu-

mulated fatigue damage D can be written, see Wirsching
[12]



=7 K(N_ ) T(1 + )J (19)

where T7, is the expected lifetime. Here we use 77, =25 years.
0s 15 the standard deviation of the stress process and T, is
the mean period of a stress cycle.

['(+) is the gamma function. k and K are parameters in the
SN- curves. Here k is modelled as a constant, k=3, and K 1s

modelled as a random variable as LN(6400M Pa, 1024M Pa)

where LN signmifies a log-normal distribution. Stress con-
centration 1s neglected. Now the fatigue failure function
can be written for a given location z;

9(zi,p,7) = —In(D) = =In(Ty) + fﬂ(Tu(zz*)) + In(K)

— kIn(2v2) — In(T(1 + )) — kin(o4(2;)) (20)

The random variables in © are modelled with a log-normal
distribution, mean values (0.03) and variances estimated
from the estimator covariance matrix for ©, see next sec-
tion. In the reliability calculations the K’s variables for
different failure elements are assumed to be uncorrelated.
Each of the random variables in © is assumed fully corre-
lated between the failure elements.

3.3 The Estimator Covariance Matrix

The estimator covariance matrix for © is now established
using the Fisher Information Matrix (7).

We assume that y(z,t) is directly measurable at the spatial
The observation y™(z;,?) 1s described by the

measuring equation

points z;.

y"(zi,t) = y(zi, 1) + vz, 1) (21)
where v(z;,t) denotes measurement noise at location z;. It
1s assumed that the noise 1s a space uncorrelated stationary
Gaussian white noise process {T(z;,t)}. The covariance is

E[T(Z,‘,tl), T(Zj,tz)] — 0'26§j6(t1 — tg) (22)

where

6;; and 6(t; —t2 ) denote the Kronecker and Dirac delta func-
tions, respectively. o is the variance of the measurement
noise at the :th measurement point. Assuming the same
variance at each measurement point 1s a usual simplifying
assumption. Here we use a variance of the measurement
noise corresponding to a noise to signal ratio at 0.44. The
noise to signal ratio is defined as the ratio between the stan-
dard deviation of the noise and the standard deviation of

the response process at 0.5 L.

Based on a set of IV,.observations over [0,7T,,]| the Fisher

Information Matrix J associated with identification of ©
using themeasurement vector in (21) is given by

T SRR (7O JLTOR0) P

1=1

aygé’t) 1s here estimated by numerical differentation. The

response y(z,t) is found from (17) based on a simulated
realization of the load process {V(t)}. Tr, is the measuring
period.

3.4 Results
The optimization problem (1)-(2) is solved sequentially for

varying N,. It is assumed that the cost function can be
modelled as follows
Co =10° DKK., C; =500 DKK. C;=10° DKK.

Cr may vary between 10° — 10° DKK.

First, in order to demonstrate the design problem (1)-(2)
values of probability of failure to be expected after full-

scale measurments by two sensors are shown in figure 2 as

a function of the sensor location.

Probability of Failure

Figure 2. Pr against location of two sensors

Figure 2. shows that our optimization problem has many
local minima and a caution about local minima should be
given. Therefore, the optimization problem (1)-(2) has to
be solved with a range of different initial values of the de-
sign variables Z. Due to symmetry of the problem we face
symmetrical minima. It is also seen that the optimization
problem is flat near the minima. This causes difficulties in
the precise choice of optimal design on the one hand, but
1t also means that some imperfections in the design or in

the practical positioning of sensors result in relatively small
increase of error.

The optimal locations for N, = 1 — 5 sensors are shown in

figure 3.






