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Abstract The problem of estimating frequency
response functions and eztracting modal parame-
ters is the topic of this paper. A new method
based on the Random Decrement technique com-
bined with Fourier transformation and the tradi-
tional pure Fourier transformation based approach
s compared with regard to speed and quality. The
basis of the new method is the Fourier transforma-
tion of the Random Decrement functions which can
be used to estimate the frequency response func-
tions. The investigations are based on load and
response measurements of a laboratory model of a
3 span bridge. By applying both methods to these
measurements the estimation time of the frequency
response functions can be compared. The modal pa-
rameters estimated by the methods are compared. It
is expected that the Random Decrement technique
is faster than the traditional method based on pure
Fourier Transformations. This is due to the fact
that the Random Decrement technique is based on
a simple controlled averaging of time segments of
the load and response processes. Furthermore, the
Random Decrement technique is expected to produce
reliable results. The Random Decrement technique
will reduce leakage, since the Fourier transforma-
tion will be applied to the Random Decrement func-
tions, which has a natural decay.

Nomenclature

Triggering levels.

Covariance functions.

Time derivative of C.

Random Decrement function.

Estimate of Random Decrement function.
Impulse response function/matrix.
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H H Frequency response function/matrix.
N Number of triggering points.

i, T Time variable.

Tx () Triggering condition on X(t).
X(t),Y(t) Measurements, time series.
X(t),Y(t) Time derivative of X(t),Y(1).

Z(w) Fourier transform of D(r).

7(w) Coherence function.

o Standard deviation.

1 Introduction

Usually the Frequency Response Function (FRF)
of a linear structure is estimated from pure Fast
Fourier Transformations (FFT) of meausurements
of the response and the driving force. The most
accurate way of estimating the FRFs depends on
where and what kind of noise is introduced in the
measurement. So dependent on the noise several
different estimators of the FRF's exist, see e.g. Ben-
dat & Piersol 1], Fabunmi et al. {2], Yun et al. [3].
Another problem with FFT based FRF’s is the in-
troduction of leakage. The leakage error is usually
minimized by a suitable choice of window function

applied in the time domain before calculating the
FFT.

This paper deals with the same problems from an-
other point of view. The measured input and out-
put of a linear system is averaged in the time do-
main by applying the Random Decrement (RDD)
technique. The theory behind the RDD technique
and the link between the RDD functions and co-
variance function of zero mean Gaussian processes
is described in Vandiver et al. [4] and Brincker et
al. [5]. The concept described in this paper is more
general and not restricted to Gaussian processes. In
section 3 it will be shown that the Fourier trans-



form of the RDD functions constitute a basis for
estimating FRT's.

Several advantages are expected. Since only a single
Fourier transformation is performed and the RDD
function is obtained by a simple averaging process
in the time domain, the RDD approach is expected
to be faster than the traditional approach in most
Furthermore, the RDD functions will de-
cay towards zero which should eliminate the leakage
problem. If noise is added to the measurements it
will be averaged out in the time domain instead of
the frequency domain.

cases.

The results presented in this paper are based on the
measurements of the input and output of a labora-
tory bridge model. Previously, a simulation study
was carried out, see Asmussen et al. [6]. The re-
sults encouraged to further investigations based on
real data.

2 The Random Decrement
Technique

The auto, Dxx, and cross, Dyx, RDD functions
are defined as the mean value of the stochastic pro-
cesses X and Y on some condition of X

Dxx(t) = E[X(t+7)|Tx () (1)
Dyx(r) = EY (@ +7)Tx) (2)
In eq. (1) and eq. (2) Tx(y is the triggering con-

dition. The general applied triggering condition,
T)?(t)’ is introduced as

T)Cg(t) = {a1 < X(t) < ag,v; < j((t) < ’U} (3)

An unbiased estimate of the RDD functions is
obtained by calculating the empirical conditional
mean of the realizations of X and Y.
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Dxx(r) = Nzx(ti‘*'TlTX(t;)) (4)
i=1
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Dyx(r) = ‘N’ZY(ti‘*’TITX(ti)) (5)
=1

If X and Y are stationary zero mean Gaussian pro-
cesses and the general applied triggering condition
is used, a fundamental relationship between the
RDD functions and the covariance functions and
their time derivative exists, see Brincker et al. [5]

Cxx CY
Dxx(r) = ZXa - ’\+(T)v (6)
O'X UX
: Cyx Cy
Dyx(r) = 0’2"a - ”g(T)v (7)
X Tx

where the triggering levels a and v are determined
from the density function of X and X and the trig-
gering levels

o= [Tapeaz v [Tisg@a ()

aq 1

Several different triggering conditions can be for-
mulated in order to pick out only the covariance
functions or their time derivative, Brincker et al
[5]. In this paper only the positive point triggering
condition, Tf(t), is used

T = {&1 < X(1) < ag} (9)

Since no condition are made on X(t) and the mean
value is assumed to be zero, the triggering level v
is zero according to eq. (8), eq. (6) and eq. (7) are
reduced to

CXX(T) a

Dxx(t) = af\, (10)
Cvx

Dyx(r) = 230, ()
X

The estimation time of the RDD functions is de:
pendent on three user options. The actual choice of
triggering condition, the choice of triggering levels
and the choice of the maximum time lag in the RDD
functions. Eq. (6) and eq. (7) constitute the basis
for using the RDD technique in ambient testing by
assuming the unmeasurable load to be white noise
or white noise filtered through a rational shaping
filter. The modal parameters can then be extracted
from the RDD functions using methods which are
based on free decays or impulse response functions.



If the load and the reponse of a linear mechanical
system are measured another approach for estima-
ting modal parameters by the RDD technique ex-
ists. The Fourier transformation of the RDD func-
tions can be used to estimate the FRFs of the sys-
temn.

3 Estimation of FRFs

The response of a viscous damped linear mechanical
system with n degrees of freedom is given by the
convolution or Duhamel integral

Y@ = [ =Xy (12)

The response of the ith mass to any load applied at
the jth mass is

Yi(1) = /_t hij(t — )X ;dn (13)

Using substitution of variables (t = t+7, n = £+1)
eq. (13) is rewritten to

V(t+r) = [ hir-ox,0+ 9d (14)

The impulse response function is assumed to be
time invariant. Applying the definition of the RDD
function reduces eq. (14) to

Drv(r) = [ hy(r - ODxwi€)e (15)
Or alternatively

Drx,(r) = [ hij(r = )Dx,x, ()i (16)
The RDD functions in eq. (15) and (16) are not de-
pendent on any particular formulation of the trig-

gering condition. The Fourier transformation, Z(w)
of the RDD function D(7) is defined as

Z(w) = 51; f_ O:o =7 D(r)dr (17)

The Fourier transformation of both sides of eq. (15)
and eq. (16) is given by

Zyyvi(w) = Hij(w)Zxy, (18)

Zy;x,(w) = Hij(w)Zx,x, (19)
Corresponding to pure FFT analysis a coherence
function based on the Fourier transformed RDD
functions can be calculated

[Zxy(w)|?
Zxx(w)Zyy(w)
Eq. (18) and eq. (19) are both estimators of the
FRFs. Which of these two estimators to use de-
pends on the noise included in the measurements.

Yw) = (20)

4  Choice of Estimator

Suppose that the measured response Y () at some
point on the structure consists of the true structural
response, Y(t) and measurement noise, W(t). The
measured input is assumed to be noise free

Yu(t) = Y+ W(t) Xu(t) = X(1) (21)
In order to prevent introduction of false triggering
points the RDD functions are calculated as
Dxpxy(7) = E[Xp(t+ T)’T,%;M(t)]
(22)
= Dxx(7)

E[(Y(t4 7))+ W(t + 7)) Tx, )
= Dyx(7) + Dwx(r) (23)

If the noise, W, is independent of the input X and
has zero mean, the last term vanishes. This means
that in the case of independent noise at the response
only the identification should be based on eq. (19).
On the other hand; independent zere mean mea-
surement noise at the input only has the effect that
the identification should be based on eq. (18).

Dy xps

5 Laboratory Bridge Mo-
del

The laboratory bridge model consists of a simply
supported steel plate with 3 spans. The steel plate
has the dimensions 3.0 x 0.35 m. The length of
each span is 1 m. A shaker is attached at the right-
hand span. The shaker is exciting the bridge model
with white noise in the frequency span 0-60 Hz.
The measurements consist of 32000 points sampled
with 150 Hz. The measurements are filtered analo-
gously and digitally after sampling.
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Figure 1: Laboratory bridge modal and sensor loca
tions.

6 Results

The FRFs of the bridge model are estimated using
traditional FFT and the method of combining RDD
and FFT. The modal parameters are extracted from
the IRFs by the polyreference time domain tech-
nique, see Vold et al. [7]. The physical modes are
extracted from the computational modes using a
criterion on the damping ratios and modal confi-
dence factors, see Vold et al. [8].

Figure 2 and figure 3 show typical FRI's obtained
from pure FFT and RDD-FFT applied to the same
data set.

FRF ~ FFT

4 S &7 8

o 1‘0 2lU 3‘0 4‘0 5‘0 6‘0
Frequency

Figure 2: Typical FRF, |H(w)|?, estimated using

pure FFT. The mode number is indicated.

Two differences are seen at the FRFs. First the
RDD-FFT based FRF seems to be influenced by
more noise compared to the pure FI'T based FRF.
Second the peaks at the RDD-FIFT based FRF
looks shaper or they include less damping than the
FFT based FRF
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Figure 3: Typical FRF, |H(w)|?, estimated using
RDD-FFT.

Figure 5 and figure 4 shows the coherence functions
for the FRFs shown in the above figures.
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Figure 4: Typical coherence function estirnated us-
ing pure FFT.
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Figure 5: Typical coherence function estimaied us-
ing RDD-FFT.



The estimated modal parameters are printed in ta-
ble 1.

| Flue] | 1 ] 2 [ 3 [ 4 ]
RDD-FFT [ 11.67 | 15.50 | 21.53 [ 45.09
FFT [ 11.70 [ 15.51 | 21.54 | 45.11
| FHzl [ 5 T 6 [ 7 [ 8 |
RDD-FFT [ 47.99 [ 50.19 | 51.75 | 61.60
FIET | 47.99 | 50.17 | 51.78 | 61.60
L CPe [ T [ 2 [ 8 [ 7 ]
RDD-FFT [ 0.005 [ 0.001 [ 0.001 | 0.001
FIT 0.010 | 0.009 | 0.002 | 0.001
L ¢l | 5 16 [ 7 [ 8]
RDD-FFT [ 0.002 ] 0.004 | 0.005 | 0.006
FFT [ 0.003 [ 0.003 | 0.003 | 0.003

Table 1: Estimated eigenfrequencies F' in Hz and
estimated damping ratios { in %

There is a high correlation between the estimated
eigenfrequencies, whereas the damping ratios gene-
rally are smaller for the RDD based modes. Some
of the mode shapes are plotted in figure 6 - figure 11
which also includes the MAC between the modes.
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Figure 6: First mode estimated using FFT and
RDD-FFT. MAC=0.90.

The difference in the two estimated modes of figure
6 is systematic and insensitive to the model order or
the number of points used in the modal parameter
extraction procedure
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Figure 7: Third mode estimated using FFT and
RDD-FFT. MAC=0.9970.
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Figure 8: Fourth mode estimated using FFT and
RDD-FFT. MAC=0.9952.
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Mode 5: RDD 47.99 Hz

Figure 9: Fifth mode estimated using FFT and
RDD-FFT. MAC=0.9993
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Figure 10: Seventh mode estimated using FFT and
RDD-FFT. MAC=0.9963.

Mode 8: FFT 61,6 Hz
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Mode 8: RDE 61.6 Hz

Figure 11: Fighth mode estimated using FFT and
RDD-FFT. MAC=0.9983.

Table 2 illustrates the advantage of the RDD-FFT
approach with respect to the estimation time. This
approach is 3 times faster than the traditional FFT
approach for estimating the FRF's of a single setup,
consisting of 8 measurements of each 32000 points.

RDD | FFT
Time [CPU] | 82 240

Table 2: Estimation times for RDD-FFT and pure
FFT based FRF's.

7 Conclusion

The principle of Random Decrement based FRT e-
stimation is tested on data collected from a white

noise loaded laboratory bridge model. The results
are compared with the results from a traditional
FFT based FRF estimation.

In general the application of both methods resulted
in high-correlated modal parameters. The pure
FFT approach is the most reliable approach but
it is also considerably slower. Care must be taken
in the choice of triggering condition and triggering
levels with the RDD technique.
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