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ABSTRACT 
 
Geophones are highly sensitive motion transducers that have been used by seismologists and 
geophysicists for decades. The conventional geophone's ratio of cost to performance, including noise, 
linearity and dynamic range is unmatched by advanced modern accelerometers. However, the problem of 
this sensor is that it measures velocity, and that the linear frequency range is limited to frequencies 
above the natural frequency, typically at 4-12 Hz. It is shown in this paper how the sensor signal can be 
digitally linearized 2 decades below the natural frequency obtaining a sensor that allows the user to 
measure displacement, velocity or acceleration with high sensitivity and large dynamic range.  
 
 
NOMENCLATURE 
 
x(t) base displacement 
y(t) coil displacement 
M moving mass 
k suspension stiffness 
c suspension damping ratio 
f frequency 
ω  cyclic frequency 
ς  damping ratio 
H transfer function 
V voltage 
G transduction constant 
 
 
INTRODUCTION 
 
The geophone sensor is in principle a very simple sensor. In its simplest form, it is just a coil suspended around a 
permanent magnet - just like a loud speaker coil/magnet system. When the coil moves relative to the magnet, a 
voltage is induced in the coil according to the Faraday law that we all have investigated during our high school 
days: think back to when you were sitting with a permanent magnet moving it inside a coil and looking at the dial 
gage moving. The induced voltage is proportional to the relative speed, thus the geophone sensor element is 
measuring velocity. 
 



 

igure 1. Left: An isometric and cross-sectional view of a typical geophone, after Aaron Barzilai [1], Right: 

his sensor type has several advantages. Because of the simple construction, the sensor element is robust and 

e. 

owever, there are some drawbacks with this type of sensor design. The sensor has two main weak points: a) 
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ecently a successful attempt has been made to improve the geophone sensor element, Barzilai [1]. The main 

he idea of the work presented herein, is based on the idea of using the geophone sensor element as it is. The 

on is 

he investigations in this paper is performed on the Pinocchio A 150 sensor, see Figure 2 and Ref. [3]. The 

 the 

 

his paper will present how an effective and accurate correction algorithm can be implemented using the Discrete 

F
Frequency response of the SM-6 geophone sensor element from I-O, see [4] used in the Pinocchio A 150 
Vibraphone 
 
 
T
cheap. The sensor is simple to use because it is a passive sensor element that does not require any kind of 
power supply. Further, if the sensor is well engineered, it has an excellent linearity and a large frequency rang
Since normally not only a single coil is used, but two coils in differential coupling, and since the sensor does not 
include any active elements to introduce potential additional noise, the sensor has an extremely low noise floor. 
 
H
limited excursion, b) limited frequency response. The limited excursion is due to the fact that the coil can only 
move a certain amount relatively to the permanent magnet; this normally restricts the relative coil movement to
few mm. The limited frequency response is due to the fact that since the coil is suspended by a spring system, the
system properties change around the natural frequency of the suspension system. The natural frequency of a 
typical geophone sensor element is around 4-14 Hz. Above the natural frequency the sensor element has its ni
properties giving a signal according to the specifications provided by the vendor. However, below the natural 
frequency the response is rolling off. An overview of the sensor element design and a typical transfer function 
given in Figure 1.  
 
R
idea relative to Barzilai’s work is to improve the response of the sensor by adding a separate displacement 
measurement to improve the response in the low frequency region, Barzilai et al, [2]. 
 
T
idea is, that since the noise properties of the sensor element is so fine, all the needed information is already 
available, and thus, no additional information has to be added. However, since the information in the low 
frequency region is distorted by the limited response of the geophone, the signal in the low frequency regi
recovered by basically inverting the frequency response of the geophone element, often referred to as inverse 
filtering. This can be done by using a frequency response function common for all sensor elements of a given 
type, or better; to use a frequency response function individually calibrated for each sensor element.  
 
T
Pinocchio sensor is based SM-6 geophone sensor element from I-O, inc, Ref. [4]. The Pinocchio sensor is 
delivered with a software routine performing the described corrections and integrations/differentiations. Thus
more general application of the sensor to obtain either displacement, velocity and acceleration in a broader 
frequency range justifies the name “Vibraphone” – the Pinocchio A 150 Vibraphone. The key concepts of the
Pinocchio A 150 presented in this paper is protected by pending patents. 
 
T
Fourier Transform (DFT), Brigham [3]. The reason for using the DFT is that in the frequency domain it is easier to  



 
 
 
 

y(t), coil displacement 

x(t), base displacement 

 
Figure 2. Left: Definition of base and coil displacements, Right: Theoretical transfer function for the Pinocchio A 
150Vibraphone sensor as estimated by Eq. (5). 
 
 
implement general frequency response recovery as well as integration/differentiation and general filtering, as 
compared to the time domain that involves convolution.  
 
Finally, in this paper it is shown how the low frequency response of the sensor element can be accurately 
obtained using a laser, since the laser has a simple frequency characteristic that can be accurately accounted for. 
 
 
SENSOR ELEMENT RESPONSE 
 
It is known that the geophone sensor element is well modeled by a single degree of freedom system (1DOF) , 
Barzilai [1], [2]. The response of the system is given by the common solutions to the “foundation displacement 
input and displacement output” as given for instance by Bendat and Piersol [4]. If the base and coil displacements 
are defined as shown in Figure 2, then the total force on the moving coil is given by 
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Where   and c  is the stiffness and damping of the suspension system. Thus the equation of motion is given by k
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Taking the Fourier Transform and introducing the natural frequency and the damping ratio 
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we obtain the Fourier transforms  of the base and coil response. According to the Faraday law, the 
introduced voltage is proportional to the relative speed between the coil and the magnet 
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where  is the transduction constant. Thus, the transfer function between the velocity of the base and the output 
signal of the sensor element is 

G
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Surprisingly enough this transfer function is the same as the transfer function between force and displacement of 
the simple 1DOF system with the modification given by the factor  instead of the normal factor , Bendat & 
Piersol [4]. However, because of the factor , instead of defining a low pass filter as the traditional 1DOF 
system, in this case the system defines a high pass filter. The transfer function for typical values of the natural 
frequency and the damping ratio is shown in Figure 2. Please note that even though amplitude errors are small, 
as soon as the input frequency is higher than the natural frequency of the sensor element, this is not the case for 
the phase errors. As it appears from Figure 2, significant phase errors are present even at 20-30 Hz. This 
illustrates the need of correcting the sensor for amplitude and phase errors. Please also note that from Eq. (5) the 
following results for the phase 
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These relations will be used later for identification of natural frequency and damping of the sensor element. The 
SM-6 sensor element from I-O has the following mean properties, mVsG /.828= , , Hzf 540 .= 560.=ς  
 
 
DIGITAL RESPONSE IMPROVEMENT 
 
The measured data  are taken from the discrete time domain to the discrete frequency domain by the 
Fast Fourier Transform (FTT), Brigham [3]. In the frequency domain the measured signals are easily corrected 
using the inverse transfer function given by Eq. (5) 
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and the corresponding time signals are then obtained by an inverse FFT transform. However, since the FFT is 
assuming periodic signals, leakage errors are introduced in this calculation procedure. Leakage is minimized by 
increasing the size of each data segment that originally includes  points to include N Nβ  points. The so defined 
segment of data is at the ends of each calculation segment appended with 2/Nβ  points over which a window is 
also applied to minimized leakage errors. Thus leakage is minimized both by increasing the effective length of the 
data segment and by applying an appropriate window.  
 
If  is the smallest frequency needed to include in the correction procedure, and if f∆ T∆  is the sampling interval, 
then the minimum number of points in the data segments is given by 
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and thus, the minimum time delay  between the uncorrected and the corrected signal is given by dT
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Figure 3. FFT algorithm for real time calculation of the corrected signals for 2=β . 
 
 
In the same calculation procedure a general filter is easily implemented with the transfer function  by using the 
alternative formula 

fH
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or integration and differentiation can be implemented to obtain displacement and acceleration using the following 
expressions 
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NOISE PROPERTIES 
 
I-O Inc. is specifying the noise floor in the frequency domain to HzsnmUnoise /.10=&  corresponding to an 

electrical signal of HznVVnoise /3= . However, noise might be introduced by external sources such as 
electromagnetic radiation and/or air pressure fluctuations. Both sources can significantly increase the noise floor. 
For instance in Streickeisen et al [5] it is stated, that if the active mass is not protected against air pressure 
fluctuations, buoyant forces from air pressure fluctuations will at least be three orders of magnitude larger than 
seismic background noise.  
 
However, since the Pinocchio sensor is protected from external electromagnetic radiation, since there are no 
electrical components present inside the sensor casing to produce noise, and finally since the sensor element is 
completely protected against air pressure fluctuations by a specially designed air tight (and water tight) casing, 
thus minimizing any additional noise exposure. Also, the Pinocchio sensor casing consist of an aluminum casing 
filled with a special epoxy compound with improved electrical conductivity. The epoxy compound is improving the 
protection against both air pressure fluctuations and external electromagnetic radiation. The noise floor given by I-
O is assumed to be constant for all frequencies. Thus, the velocity resolution of the corrected sensor is given by 
 

Measured signal 

N N N

N/2 N/2 N 
Correction  
algorithm 

Corrected signal 
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Figure 4. Dynamic range estimated for the Pinocchio A 150 sensor with digital correction. 
 
 

 
Figure 5. Left: laser calibrated versus the accelerometer, note the linear trend of laser phase error up to about 
400 Hz. Right: fitting of linear trend to obtain laser delay. Phase errors in degrees. 
 
 
Table 1. Maximum values and noise floor values for displacement, velocity and acceleration measurements 

Quantity Frequency [ ]Hz  
 0.01 0.1 1 4.5 10 100 1000 

[ ]HzmX /max  810 8.1 8.0e-2 4.5e-3 3.8e-3 4e-3 4e-3 

[ ]HznmX noise /  3.2e5 3.2e2 3.2e-1 4.0e-3 1.5e-3 1.6e-4 1.6e-5 

[ ])/(max HzsmX&  51 5.1 0.50 0.13 0.24 2.5 25 

[ ])/( HzsnmX noise
&  2.0e4 200 2.0 0.11 0.09 0.10 0.10 

[ ])/( 2
max HzsmX&&  3.2 3.2 3.1 3.6 15 1.6e3 1.6e5 

[ ])/( 2 HzsnmX noise
&&  1300 130 13 3.2 5.9 63 630 

Dynamic range  [ ]dBD 128 148 168 181 188 208 228 

 
 
 
 



 
Table 2. Estimated values for natural frequency and Damping ratio 
 Natural Frequency 

[Hz] 
Damping ratio 

[%] 
Vendor values 4.5 56 
Vibraphone 1 4.62 55.1 
Vibraphone 2 4.80 51.1 
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The maximum input signal is determined by the limited excursion of the suspended coil. For the considered 
sensor element, the value of the maximum excursion is mme 4=max . The maximum input is then found from 
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and the maximum signal-to-noise ratio  can be obtained together with the dynamic range  to R D
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Thus, since both the maximum input and the noise floor is similarly affected by the transfer function, the signal-to-
noise ratio becomes independent of the transfer function. Further, since the noise floor is assumed constant in the 
frequency domain for the velocity measurement, and since the maximum value is defined as a displacement, the 
signal-to-noise ratio becomes proportional to frequency. This means the higher the frequency, the higher the 
signal-to-noise ratio. On the other hand, the signal-to-noise ratio vanishes at DC. This result – that is general and 
independent of what kind of signal being measured, being its displacement, velocity or acceleration - is illustrated 
in Figure 4. Some main results for noise floor and maximum input values are given in Table 1.  
 
As demonstrated, this newly developed sensor has extraordinary high dynamic range. Its resolution for 
acceleration in the range  is better than [ ]Hz101: Hzng /1 , and its best resolution for velocity is 

)/(. Hzsnm10 for frequencies higher than the natural frequency, and finally its best resolution for displacement is 

much better than Hznm / in the high frequency band. However, these features can only be realized to the 
extend where the applied measurement unit can mach the sensor noise properties, i.e. the noise in the 
measurement system must be smaller than the noise from the sensor. Thus, using measurement systems with 
higher noise floors will decrease the observed resolution of the sensor accordingly. For instance, if a velocity is 
measured with a measurement unit with an input noise floor of HznV /100 , then the noise floor is increased by 
a factor 33, and thus, the effective dynamic range is decreased by about . dB30

As it appears, the velocity resolution at  is Hz010. )/( Hzsmµ20 , which is comparable to background seismic 
noise. Since soft soil sites and structures placed on the soil will amplify the vibrations around the natural 
frequency of the site or structure, and thus cause a significantly higher vibration level, the A 150 Vibraphone can 
be used for measuring ambient vibrations in soils and structures down to about . Hz010.
 



 
Figure 6. Empirical transfer functions for the two Pinocchio A 150 Vibraphones compared with the theoretical 
transfer function. 
 
 
 
CALIBRATION 
 
The Pinocchio A 150 sensor is calibrated in a Brüel & Kjær shaking  table (BK 4802 exciter body with BK 4818 
table head driven by power amplifier BK 2708) using pink noise input from a Brüel & Kjær BK 1405 noise 
generator. The response of the sensor is measured using a Teac, LX 10 recorder. The movement of the shaker 
head is measured in the high frequency range using a Brüel & Kjær 4508 B accelerometer, and in the low 
frequency range using an optical displacement sensor based on a laser principle. 
 
The accelerometer response is nearly distortion free in the frequency interval from 10 to 1000 Hz, thus the 
distortion in this region due to accelerometer phase and amplitude errors is ignored. The laser, however, has a 
constant time delay between input (head displacement) and output. Calibrating the laser against the 
accelerometer to estimate the phase error, it is clearly seen as a linearly increasing phase error as shown in 
Figure 5. The linear phase error is seen to be present up to about 400 Hz . For higher frequencies the laser signal 
becomes buried in noise and thus, the phase error start showing random fluctuations. However, fitting the linear 
part of the phase error estimates a time delay in the laser of mst 752.=∆ , see Figure 5, right.  
 
After correcting the laser signal for phase errors dividing with the laser transfer function 
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the empirical transfer function of the sensor can be estimated. In this case two vibraphones were investigated, 
Vibraphone1 and Vibraphone 2, see the estimated transfer functions compared with the theoretical transfer 
function in Figure 6. As it appears the response is nice and flat from the natural frequency up to the 1 kHz. Around 
the natural frequency, large phase errors are present, and the amplitude start rolling off. However, in accordance 
with a whish to limit the movements of the head of the shaking table, the input is limited to frequencies above 1 
Hz, Thus, below about 1 Hz the estimated transfer function gets indeterminate due to noise. However, as it 
appear from Figure 6, the phase of the transfer function is well defined around the natural frequency of the 
sensor, and thus, a sound basis for estimating the natural frequency and the damping ratio of the sensor element 
based on the relations given by Eq. (6) has been established. 
 
Fitting a straight line to the estimated phase relation in the vicinity of 2/πϕ −=  then allows the estimation of both 
natural frequency and damping as indicated by Eq. (6). The results for the two investigated sensors are shown in 
Table 2.  
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